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Executive Summary 

D8.3 report describes the techniques developed to construct context-specific metabolic models from 
single cell gene expression data and the methodology to analyse them. The goal of deliverable D8.3 
is to generate and analyse in silico context-specific metabolic models to identify the metabolic 
pathways and metabolites involved in tumorigenesis and metabolic dependencies that can enable 
small-molecule therapies. 

D8.3 provides a computational tool for generating context-specific constraint-based metabolic 
models based on an integrative analysis of scRNA-seq data, assembled in a computational pipeline 
written in R and Matlab.  

D8.3 provides a computational data resource containing the context-specific constraint-based 
metabolic models constructed from scRNA-seq Ewing Sarcoma patient derived xenografts and 
induced cell lines to study metabolic rewiring and characterize the Warburg effect. 

D8.3 describes Differential Flux Balance Analysis, a general computational tool for analyzing 
context-specific constraint-based models to rank metabolic pathways according to 
maximization/minimization of a set of metabolic goals.    

The computational methodology for analysing context-specific metabolic models provided in D8.3 
will be applied to the generated patient-specific metabolic models in the future. 
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Chapter 1 Introduction 

Systems-level understanding of metabolism is pivotal to comprehending phenotypic differences. It 
consists of all metabolic reactions necessary to sustain life in a cell. Cell metabolism lies downstream 
of other omics summarising the effects from upstream layers of epigenome, genome, and 
transcriptome, but also of extracellular effects, and is reflected by differences in morphology, 
physiology and pathology (Evers et al. 2019). This highlights the necessity to study the biochemical 
and physiological characteristics of individual cells and their environment. However, conventional 
technologies often use bulk population-level measurements, ignoring the unique behaviour resulting 
from cell-to-cell variations, including cellular metabolism, growth, and proliferation. 

Recent development of single-cell omics technologies facilitates the investigation of intra tumoral 
heterogeneity at the single-cell level, enabling the exploration of cell-to-cell variations (Kashima et 
al. 2020; Zhu, Preissl, and Ren 2020). These approaches can help characterise the origins of genetic 
and non-genetic heterogeneity, which can modulate cell response to exogenous and endogenous 
factors such as the activation of cancer driver genes (Almendro, Marusyk, and Polyak 2013). 
However, single-cell metabolomics techniques are still limited: metabolic measurements are 
expensive, skill intensive, and need additional improvements in terms of measurement sensitivity 
and throughput of samples and metabolites (Kumar et al. 2020; Alghamdi et al. 2021). In addition, 
there is a lack of established techniques for simultaneous multi-omics measurement comprehensive 
of the metabolome. Because omics layers are strongly intertwined, the knowledge about omics 
layers that can be more easily measured in single cells, such as mRNA, together with prior 
knowledge about metabolism, enable the prediction of cellular metabolism.  

In the field of systems biology, genome-scale metabolic models (GEMs) integrate available omics 
data with genome sequences to provide an improved mechanistic understanding of the intra cellular 
metabolism of an organism. The mathematical framework of GEMs allows to predict internal cellular 
fluxes from a priori knowledge of thermodynamic constraints on individual enzymatic reactions, 
steady state hypothesis and the genome-scale stoichiometry matrix of all metabolic reactions. The 
idea is to explore the system’s properties at a steady state during which internal metabolites stay at 
a constant concentration while exchange fluxes are constant and correspond to a constant 
import/export rate.  

In addition, GEMs provide a mechanistic cellular context that can be coupled with omics data to 
quantify and predict the activity of diverse metabolic pathways and cellular functions. Several 
algorithms exist that build context-specific GEMs from omics data integration to recapitulate the 
metabolism of specific cell types under specific conditions. However, they may result in considerable 
differences in size, functionality, accuracy, and ultimate biological interpretation (Opdam et al. 2017). 
A better consensus between existing algorithms is provided by integrating biological knowledge 
inferred from omics data (Richelle et al. 2019).  

To extract a unique distribution of fluxes the standard mathematical procedure is to perform Flux 
Balance Analysis (FBA) (Fell and Small 1986; Watson 1984). FBA is a standard mathematical 
procedure to semi-quantitatively estimate the metabolic flux of each reaction in a genome-scale 
model at steady state when satisfying a given metabolic objective (objective function optimization), 
such as the production or consumption of given metabolites. 

Here, we develop an original pipeline to construct context-specific models from scRNA-seq data that 
couples scRNA-seq analysis, functional annotation of clusters of cells, and the GIMME algorithm to 
integrate scRNA-seq data into GEMs. The workflow is then applied to a set of scRNA-seq data from 
Ewing Sarcoma (EwS) and FBA is performed to obtain a unique distribution of fluxes for each 
context-specific model setting as the objective the biomass pseudo flux.  

We plan in the future to apply Differential Flux Balance Analysis (DFA) to rank metabolic pathways 
and metabolites according to a biological signature. DFA is a method developed at UNINA (Pagliarini 
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and di Bernardo 2013) to identify those metabolites and reactions predicted to change the most 
across two GEMs.  

This report describes the main results achieved during the work on this deliverable: 

● Building a pipeline for creating context-specific metabolic models based on integrative data 
analysis and the COBRA toolbox (chapter 2).  

● Creating a corpus of context-specific metabolic models from scRNA-seq data from Ewing 
Sarcoma patient derived xenografts (PDX) (chapter 2).  

● The methodology DFA and its application to the HepatoNet1 model, a metabolic 
reconstruction of the human hepatocyte for the analysis of liver physiology (chapter 3).  

We summarize the achieved results and lay out a plan definition for the exploitation of the generated 
context-specific metabolic models in the last chapter. 
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Chapter 2 Construction of context-specific GEMs 
from scRNA-seq data 

In this chapter, we describe the pipeline we developed to construct context-specific metabolic models 
using the Gene Inactivity Moderated by Metabolism and Expression (GIMME) method (Becker and 
Palsson 2008) through scRNA-seq integration. Since, scRNA-seq data is typically sparse, GIMME 
method would turn off a multitude of metabolic reactions (see Section GIMME method). To deal with 
it, we propose to perform scRNA-seq analysis, dimensionality reduction and clustering; and construct 
a unique gene expression profile per cluster. The cluster gene expression profile is then used as a 
proxy for the construction of the cluster context-specific genome scale model. The pipeline is built 
such that it can be applied to any set of scRNA-seq data. Further, we show its application to EwS 
PDX and cell line scRNA-seq data from Aynaud et al. 2020.  

 

2.1 Pipeline for the construction of context-specific GEMs from PDX 
scRNA-seq data 

To construct context-specific patient-derived xenografts from scRNA-seq PDX data, we propose an 
original pipeline which consists of three main steps. A first pre-processing step where dimensionality 
reduction, clustering and cluster annotation is performed on the scRNA-seq and a unique gene 
expression profile per cluster is retrieved. A second step where gene expression is integrated into a 
human genome-scale model by means of the GIMME algorithm. The third step consists in tuning the 
parameters from the previous steps with the rationale that clusters with the same annotation across 
multiple datasets should show a similar distribution of metabolic fluxes. 

Figure 1 represents a diagrammatic representation of the pipeline. The workflow uses different tools: 
seurat package in R for the initial pre-processing of the data (Satija et al. 2015); gene set signatures 
for cluster annotation; and the COBRA toolbox (Vlassis, Pacheco, and Sauter 2014; Heirendt et al. 
2019) in Matlab together with an initial constraint-based metabolic model to integrate expression 
data into GEMs.  

 

Figure 1: Schema of the pipeline for constructing context-specific metabolic models from patient-
derived scRNA-seq data. Abbreviations: CBM, Constraint-Based Models; UMAP, Uniform Manifold 

Approximation and Projection. 
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2.1.1 Pre-processing and annotation of scRNA-seq data  

At the first step of the pipeline, scRNA-seq analysis and cluster annotation is performed on each 
dataset. Clustering and cluster annotation is performed for different values of the clustering 
resolution. Aggregation of a unique scRNA-seq profile per cluster is then performed using the 
preferred aggregation method (e.g., considering the mean expression value per gene). 

The pipeline is implemented such that clusters are annotated using gene set signatures which in 
principle are associated with one biological function. Genes associated to multiple gene signature 
are kept for the calculation of signature scores. The set of gene signatures to consider must be 
uploaded as a set of different files (one per gene signature), in ‘.txt’ format, that contain a list of 
genes. Scores are then calculated using the preferred method (e.g., considering the mean 
expression value of genes). Cluster scores are centred and standardised independently for each 
dataset first. Next, clusters are jointly classified: if a score is greater than one standard deviation it 
is annotated as associated to the biological function of the signature.  

 

2.1.2 Creation of context-specific GEMs  

The second step of the pipeline consists in constructing for each cluster scRNA-seq profile a context-
specific GEM and to infer a FBA solution of fluxes. To this end one must consider an initial GEM and 
the objective function to be maximize/minimize.  

 

2.1.2.1 GIMME method 

The pipeline uses the GIMME algorithm (Becker and Palsson 2008) implemented in MATLAB, to 
extract a context-specific model from mapped gene expression data to reactions.  GIMME minimises 
usage of low-expression reactions while keeping the objective (e.g., biomass) above a certain 
threshold. In practice, cluster scRNA-seq expression is mapped to reactions in the GEM through 
gene-protein-reaction rules; low-expression reactions are turned off and in case the objective is not 
above the imposed threshold, the algorithm finds the minimum number of low-expression reactions 
that must be turned on to achieve it. The workflow allows to set the thresholds for the GIMME 
algorithm and to choose the objective function to optimize.  

 

2.1.2.2 Association of gene expression data to GEM 

Gene expression profiles were mapped to the GEMs following the conventions implemented by 
genome-scale metabolic models, where reactions are associated with genes and proteins via gene-
protein-reaction (GPR) associations (Thiele and Palsson 2010). In general, there can be a many-to-
many mapping of genes to reactions; for example, one reaction can be linked to genes (G1 and G2) 
or G3. The first Boolean AND relationship means that the reaction is catalysed by a complex of two 
gene products. Since the maximum of the complex is given by the minimum of its components, the 
weighting of the complex is defined as:  

𝐺1  𝐴𝑁𝐷 𝐺2 = 𝑚𝑖𝑛(𝐺1, 𝐺2) 

The OR relationship allows for alternative catalysts of the reaction. Thus, total capacity can be set 
either to the sum or to the maximum of its components. We set it to be the sum:  

(𝐺1 𝐴𝑁𝐷 𝐺2) 𝑂𝑅 𝐺3  =  𝑚𝑖𝑛(𝐺1 , 𝐺2)  +  𝐺3 

 

2.1.3 Tuning the parameters  

The third step consists in tuning the parameters from the previous steps with the rationale that 
clusters with the same annotation across multiple datasets should show a similar distribution of 
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metabolic fluxes. To do so, we consider cluster annotations and a FBA solution from the associated 
context-specific model.  

 

2.1.3.1 Kernel supervised PCA 

Kernel supervised PCA is used to identify reactions that best discriminate the group of clusters with 
the same annotation. The method maximises the between group variance while minimising intra 
group variance. Given the 𝑣 × 𝑛 matrix 𝑋 of 𝑣 FBA fluxes and 𝑛 clusters, and 𝑌 the 1 × 𝑛 vector of 
label annotations, the problem can be solved in closed form (Barshan et al. 2011).  

 

2.1.3.2 Silhouette score 

The silhouette score is then calculated in the kernel supervised PCA projection. The pipeline 
considers the number of kernels supervised principal components that explain 95% of the total 
variation. This score is calculated for all combinations of the parameters. Finally, the set of 
parameters for which the silhouette score was the maximum is selected.  

Note that calculating the silhouette score for a group of clusters with only one element is not allowed. 
We propose to attribute to that cluster the same annotation of the nearest cluster in the signature 
score space.   

 

2.2 Pipeline for the construction of context-specific GEMs from induced 
cell lines scRNA-seq data 

In the context of scRNA-seq data from cell lines, we propose a similar jet simpler pipeline. It consists 
in grouping scRNA-seq profiles by considering cells with a similar gene signature score. A unique 
gene expression profile is then computed for each group of cells. Construction of a context-specific 
GEMs is then performed using the GIMME method as described above.  

 

2.3 Code organization   

Pipeline’s scripts can be found on github: https://github.com/iPC-project-H2020/wp8-metabolic-
modeling. The folder is organised as follows: 

● Rcodes and MATLABcodes folders contain the R and MATLAB codes for the construction of 
context-specific metabolic models from scRNA-seq data. 

● scRNA-seq_data folder contains the scRNA-seq datasets. 
● GEM folder contains the initial GEM model. 
● IC_genes folder contains the gene set signatures used for clustering annotation.  

 

The first two steps of the pipeline are implemented in such a way that the scripts can be called from 
the terminal by running ‘Rscript.exe /Rcodes/work_flow.R’ after setting the job_profile.xlsx file in the 
parent folder. This file must include a: 

● ‘file.name’ column with the scRNA-seq file names. 
● ‘is.cell_line’ column with logicals indicating if the scRNA-seq data is from induced cell lines 

or not; 
● ‘model_name’ column with the initial GEM file name;  
● ‘ic_score’ column with the method to calculate gene signature scores (e.g. median); 
● ‘aggregation_by’ column with the aggregation method to construct a unique gene expression 

profile per cluster;  
● ‘clustering_resolution column with the clustering resolution parameter value.     

https://github.com/iPC-project-H2020/wp8-metabolic-modeling
https://github.com/iPC-project-H2020/wp8-metabolic-modeling
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The algorithms will generate 5 folders organized in sub-folders by cell line or pdx, the initial GEM 
model name, clustering resolution, gene signature scoring method and clustering aggregation 
method. The folders are organized as follows: 

● ‘cluster_profiles’ which contains the gene expression profiles.  
● ‘cluster_info’ which contains the gene signature scores.  
● ‘ValToReact’ which contains the mapped cluster gene expression values to reactions.  
● ‘FBA_solution’ which contains the FBA solutions.  
● ‘csGEM’ which contains the context-specific GEMs. 

 

2.4 Context-specific metabolic models for EwS scRNA-seq data  

2.4.1 Ewing Sarcoma dataset 

Willing to study the metabolic switch in EwS, we considered the dataset from Aynaud et al. 2020.  
It comprised:  

● temporal scRNA-seq data from the EwS A673 cell line upon EWSR1-FLI1 silencing through 
doxycycline (DOX) controlled short hairpin RNA. Following a downmodulation of EWSR1-
FLI1 by 7 days of doxycycline (DOX) treatment, the dataset was issue of a time course 
experiment after the removal of DOX from the medium, leading to EWSR1-FLI1 re-
expression.  

● scRNA-seq data from A673 xenografts in a severe combined immunodeficiency (SCID) 
mouse without DOX (DOX-) and after 7 days of DOX treatment (DOX+).   

● 8 scRNA-seq data from EwS PDXs.  

In addition, we consider an independent corpus of 7 additional, yet unpublished, scRNA-seq data 
from EwS PDX established in CURIE.  

Temporal scRNA-seq data from A673 cell lines and PDXs under DOX+/DOX- treatment were 
exploited to study the effect of EWSR1-FLI1 on the metabolism by clustering cells based on gene 
signature associated to EwS activity. With respect to the PDXs, we applied the pipeline described in 
chapter 2.1. 

 

2.4.2 Context-specific metabolic models for EwS PDXs scRNA-seq data 

For each PDX, we consider a range of resolution values from 0.25 to 0.8 (standard resolution value) 
by 0.05, and for each cluster, a unique gene expression profile per cluster is obtained by considering 
the mean and the median gene expression of cells in the cluster.  

Clusters were annotated using the gene signatures identified in Aynaud et al. 2020 associated with 
EWSR1-FLI1 activity, cell cycle (G1/S and G2/M phases), oxidative phosphorylation and glucose 
catabolism.  

We constructed a context-specific model for each cluster starting from the thermodynamically 
curated GEMs provided in Masid, Ataman, and Hatzimanikatis 2020. They included the 
thermodynamically curated version of: 

● Recon2 consisting of 7440 reactions and 5063 metabolites; 
● Recon3 consisting of 10602 reactions and 5825 metabolites;  
● a reduction of Recon2, redHuman2, consisting of 1374 reactions and 469 metabolites;  
● a reduction of Recon3, redHuman3, consisting of 1632 reactions and 591 metabolites. 

Next, we infer a FBA solution for each context-specific model from each cluster, through 
maximisation of the biomass pseudo flux. We set the objective to be the biomass pseudo flux and 
we impose it to be greater than the 90% of the biomass pseudo flux from the initial GEM. We define 
low-expression reactions in a data-driven manner as those reactions with a mapped gene expression 
value below the first quantile of the distribution of mapped expression.  
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Therefore, for each cluster we obtain: 

● a gene expression profile;  
● scores associated to EwS activity, oxidative phosphorylation, proliferation and glucose 

catabolism; 
● the mapped gene expression profile to reactions;  
● a FBA profile of fluxes obtained through maximisation of the biomass pseudo flux;  
● a cluster context-specific GEM.  

 

A preliminary analysis of the generated models can be found on github: https://github.com/iPC-

project-H2020/wp8-metabolic-modeling. We benchmark the fact that reactions associated with the 

‘Ews_high’ state involve the glycine, serine, tryptophan but also the glutathione and glutamine 

metabolism. Analysis of such models is ongoing, and results will be the objective of a publication.

  

https://github.com/iPC-project-H2020/wp8-metabolic-modeling
https://github.com/iPC-project-H2020/wp8-metabolic-modeling
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Chapter 3 Differential Flux Balance Analysis 

DFA (Pagliarini and di Bernardo 2013) is based on flux balance analysis (FBA), a standard 
mathematical procedure to semi-quantitatively estimate the metabolic flux of each reaction in a 
genome-scale model at steady state when satisfying a given metabolic objective (objective function 
optimization), such as the production or consumption of given metabolites (Fell and Small 1986; 
Watson 1984). For each metabolic objective, DFA computes the difference between the metabolic 
fluxes predicted by FBA in the WT genome-scale model versus the perturbed model (LoF or GoF of 
a single enzyme or of a set of them). The LoF model lacks the enzyme under investigation, whereas 
the GoF model is constrained so that the reaction(s) carried out by the enzyme of interest is forced 
to be more active than in the WT. The result is a ranked list of metabolic fluxes of all the reactions in 
the model, sorted by their difference in the LoF (or GoF) model versus the WT model. This difference 
is computed as the average across the metabolic objectives. Hence, the reactions that are most 
affected by the LoF (or GoF) will be found at the top of the ranked list.  

In our DFA implementation, we analyze the average change in metabolic fluxes when optimizing 
each of 442 metabolic objective functions included in Hepatonet1 (Gille et al. 2010) in standard 
physiological conditions versus perturbed non-physiological conditions. Non-physiological 
conditions are simulated by imposing additional constraints on metabolic reactions, metabolic 
objectives, or both. Finally, the change in metabolic fluxes between the standard and perturbed 
model are computed to yield differential fluxes. Then, the differential fluxes involving the same 
metabolite are aggregated to rank metabolites. In the resulting ranked list, metabolites on top will be 
the ones involved in the metabolic fluxes that change the most. 

3.1 Application of DFA to HepatoNet1 

UNINA applied an algorithm termed differential flux-balance analys (DFA) to the genome-scale 
metabolic network model HepatoNet1 (Gille et al. 2010). Briefly, this model includes 785 metabolites 
and 2,589 reactions across 8 cellular compartments, resulting in a total of 1445 compartment-specific 
metabolites. DFA is described in detail in Pagliarini et al. 2016 where it was used to understand 
metabolic changes occurring in inborn errors of liver metabolism. Here UNINA asked whether the 
same model could be used to understand the metabolic changes occurring in cancer. 

UNINA thus used the model to understand whether it could be used to elucidate metabolic changes 
occuring in response to nutrient availability and cell proliferation.  To this end, DFA was applied to 
understand the commonalities between the metabolism of heptocytes challenged with palmitate 
utilization (as a surrogate of increased fat availability, as fat usage is related to hepatocellular 
carcinoma) or proliferation (a metabolic surrogate for cellular transformation). Palmitate utilization 
was simulated by imposing palmitate reduction in the cytosol as an additional term (-palmitate(c)) in 
all the 442 metabolic objective functions. To simulate the metabolic demands of cell proliferation, we 
asked the model to maximise the production of all amino acids and nucleotides, by adding these as 
additional terms to each objective function (+ Alanine(c) + Arginine(c) ... + dATP(c) + dCTP(c)...). 
We then compared (absolute difference) the fluxes obtained when modelling palmitate utilization to 
those obtained when modelling cell proliferation across the 442 objective functions. We finally 
averaged such differential fluxes values over all the objective functions, and from these we ranked 
the metabolites to obtain the final estimates. The metabolites most altered were specifically enriched 
in glycolysis, serine metabolism and mitochondrial metabolism. These alterations indeed occur in 
hepatocellular carcinoma (Broadfield et al. 2021), thus demonstrating the suitability of DFA to 
elucidate metabolic changes in cancer. 
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Chapter 4 Conclusion and future work 

The work on this deliverable produced the required methodology for the construction of context-
specific models from scRNA-seq data. Its application to EwS data led to the construction of context-
specific models for clusters of single cell PDX which highlighted differences in the fluxomic space 
between clusters annotated to be associated to different biological functions. This provides the first 
step toward the characterization of the metabolic rewiring in EwS and open new avenues for studying 
metabolic rewiring in other cancer types.  

In the future, we plan to use scRNA-seq data from EwS primary tumors to validate our models and 
further analyze them using the DFA methodology to compare the ‘altered’ metabolic state of context-
specific models to the ‘normal’ metabolic state of the initial GEM. This last analysis can provide two 
main results: we would be able to compare the ranking of the reactions across context-specific 
models that are associated with the same function but also between context-specific models 
associated with different biological functions.  
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Chapter 5 List of Abbreviations  

Abbreviation Translation 

EwS Ewing Sarcoma 

GEM Genome scale model 

PDX Patient-derived xenograft 

CBM Constraint-based model 

DFA Differential Flux balance Analysis 
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